生成AI

最終更新日:2022/12/16
早稲田大学大学院創造理工学研究科博士後期課程およびZOZO NEXTの研究グループは、「Fashion Intelligence System」という新たな技術を開発しました。
このAIニュースのポイント
早稲田大学大学院創造理工学研究科博士後期課程および株式会社ZOZO NEXTの研究グループは、ファッションへのイメージをAIが自動で解釈し、ユーザーからの曖昧な問いに対して回答する「Fashion Intelligence System」という新たな技術を開発しました。
開発の背景として、ファッションに対してユーザーが持つ嗜好やイメージは極めて曖昧で、通常「カジュアル」「フォーマル」「かわいい」といった曖昧な表現が用いられるため、専門家ではないユーザーがファッションを理解・解釈することが難しい点が挙げられます。このようなファッション分野特有の曖昧性は、ユーザーが新しいジャンルの服装に挑戦しづらくなるなど、ユーザーからファッションへの興味を深めることの妨げとなる可能性があります。そこで研究グループは、これらの問いに対する回答を自動的に獲得することで、ユーザーの認識の幅を広げ、ファッションの解釈や興味喚起の一助となることを目指しました。
研究グループは、全身コーディネート画像と画像に付与された複数のタグ情報を同一の空間に写像し、この空間における画像とタグの座標(=埋め込み表現)を活用することで、ユーザーからの曖昧な問いに対する回答を獲得する Visual-Semantic Embeddingに基づく「Fashion Intelligence System」という新たな技術を開発しました。
この新たな技術を用いて得られた回答をユーザーに提示することで、ファッション特有の曖昧性を軽減し、ファッションに関するユーザーの着る服や購買するアイテムなどの選択・行動を支援することが期待できます。
例えば「オフィスカジュアル」がよくわからない場合、提案システムにおける画像並べ替え機能を用いることで、「オフィスカジュアル」タグが付与されている服装の中でもより「オフィスカジュアル」な服装と、そうではない服装を判断することができます。また、ユーザー自身が現在所有している服装に対して「もう少しカジュアルにしたい」と思ったとき、画像検索機能を用いることで、どのような服装が「少しカジュアルにした」服装に当てはまるかを把握することができます。この際、AAM機能を用いることで、検索された画像において「どのあたりがカジュアルなのか」を把握することができます。
論文筆頭著者の清水良太郎氏は「この提案システムで、オシャレに苦手意識がある人たちが、少しでも快適にファッションを楽しむ世の中を実現できるよう、今後も研究を続けていきます。」とコメントしています。
出典:早稲田大学
業務の課題解決に繋がる最新DX・情報をお届けいたします。
メールマガジンの配信をご希望の方は、下記フォームよりご登録ください。登録無料です。
AI製品・ソリューションの掲載を
希望される企業様はこちら