DXを推進するAIポータルメディア「AIsmiley」| AI製品・サービスの比較・検索サイト
お急ぎの方は、まずお電話で 03-6452-4750
MAIL
お急ぎの方は、まずお電話で 03-6452-4750 10:00〜18:00 年末年始除く

異常検知とは?機械学習の手法や活用事例を紹介

最終更新日:2022/03/07

AI・人工知能の技術が進歩したことにより、近年は多くの企業が業務にAIを導入するなどして、商品やサービスの向上を図っている状況です。特にAIは大量のデータを分析し、予測することを得意としているため、そのような業務をすべてAIに置き換えている企業も決して少なくありません。

そんな、大量のデータを扱う現代だからこそ、データの異常を検出する技術にも注目が集まっています。扱うデータの量が増えていけば、当然その中に異常なデータが含まれる可能性も増していくからです。今回は、そんな異常データの検出を行う「異常検知」について詳しくご紹介していきますので、ぜひ参考にしてみてください。

■異常検知とは

■異常検知とは|人工知能を搭載した製品・サービスの比較一覧・導入活用事例・資料請求が無料でできるAIポータルメディア

異常検知とは、大量のデータから通常とは異なるもの(異常)を検出することをいいます。データマイニングを利用してデータセット中の他のデータと照らし合わせを行い、一致していないものを識別していくという仕組みです。そのため、異常検知における「異常」というのは、通常の動作として定義された概念に当てはまらないものことを指しています。

そんな異常検知ですが、用途によっては「故障検知」「不正使用検知」といった呼ばれ方をすることもあります。そのため、これらを別物として捉えてしまう方もいらっしゃいますが、これらはすべて「他の大量のデータとは異なる振る舞いをみせるデータを検出する技術」であることに変わりはないため、すべて同じものと捉えて問題ありません。

なお、最近の異常検知では、メールや文書、動画、画像、Webサイトのログといった「非構造化データ」が用いられるケースが多くなっています。そのため、実際のビジネスにおいて活用していくためには、データ分析に関する知識や経験が必要になるでしょう。

■異常検知で解決できる3つの課題

・人件費削減

異常検知を導入することによって得られる最大のメリットと言っても過言ではないのが、人件費を削減できるという点です。これまでは、人の目によって検知する体制を整えなければなりませんでした。また、人の目によるチェック作業にはミスが生じる可能性もあるため、複数の従業員によるダブルチェックなど、手間をかける必要もあったのです。

その点、異常検知システムを導入すれば、すべてのチェック作業をシステムに代行させられるため、大幅な人件費削減につなげることができます。AIやロボットに代行することのできない「人間が力を注ぐ必要のある業務」にフォーカスできるようになるため、さらなる生産性向上が期待できるのです。

・ヒューマンエラー防止

異常検知システムを導入するメリットとしては、ヒューマンエラーを防止できるという点も挙げられるでしょう。人の目によるチェック作業では、ミスや見落としが生じてしまうケースも少なくありません。また、経験や体調によって、チェックの精度に差が生まれてしまうことも多いのです。

その点、異常検知システムを活用すれば、常に一定のパフォーマンスを発揮することができます。当然、人間のように体調によってパフォーマンスが低下する心配もありません。そのため、24時間365日体制で、高精度な異常検知を維持することができるのです。

ヒューマンエラーを防止できれば、ミスが発生したときのように業務がストップすることもないため、さらなる生産性向上も期待できるでしょう。

・業務の属人化予防

近年は、少子高齢化に伴う人手不足問題が深刻化しています。そのため、ベテランの従業員が培ってきたスキル・経験などを若手の従業員に継承することも難しくなってきている状況です。そういった背景もあり、異常検知の分野においても「高い精度でチェックを行うための技術」を若い人材に受け渡していく環境を構築するのは難しくなりつつあるのです。

だからこそ、最近では業務の属人化を防ぐことが重要視され始めています。異常検知システムは、まさにその「属人化防止」という観点でも大きな役割を果たす存在といえるでしょう。目視によるチェックよりも高い精度を実現でき、さらに体調やモチベーションによる精度低下の心配もないため、企業にとって大きなメリットがあるのです。

■異常検知の種類

ここまでの解説で、異常検知というものがどのような仕組みなのかお分かりいただけたかと思いますが、異常検知にはいくつかの種類が存在します。大きく分けると、以下の3種類の方法です。

・外れ値検出

外れ値検出とは、データを記録する際に生じてしまった人為的なミスなど、全体から大きく外れているデータを検出する方法のことです。他の大半のデータとは値が大きく異なるため、機械学習によって過去のデータを積み重ねていくことで、より精度を高められるようになります。

・変化点検出

変化点検出とは、データの構造や性質などといった時系列データのパターンが急激に変化する部分を検出する方法のことです。例えばWebサイトにおいて、特定のワードでのアクセスが、ある時期を境に急激に増加するケースなどがあります。この場合のアクセスが急激に増加する「境目」を検知することができるのが、この変化点検出というわけです。

・異常部位検出

異常部位検出とは、不正行為や不審行為など、通常とは明らかに違う動きを検出するための方法です。例えば、我々人間の心拍数は一定のリズムであることが大半ですが、急激な心拍数の変化(異常部位)だけを検出したい場合などには、この方法が活用できます。

■異常検知に使われる機械学習手法

■異常検知のシステムを作成する際に重要となる5つの機械学習モデル|人工知能を搭載した製品・サービスの比較一覧・導入活用事例・資料請求が無料でできるAIポータルメディア

異常検知システムを作成する際には、いくつかの機械学習モデルについて理解した上で取り組んでいくことが大切になります。それぞれの特徴を理解していなければ、異常検知のシステムに合ったモデルを選択していくことができないからです。そのため、ここからは5つの機械学習モデルの特徴をご紹介していきますので、ぜひ参考にしてみてください。

・教師あり学習

教師あり学習とは、「学習処理」「判定処理」という2つのプロセスに分かれているのが特徴の機械学習モデルです。大量の学習データに「正常」「不良」といった判定ラベルを付けることで、AIに学習させていきます

ただし、一度学習させただけで認識精度が完璧になるわけではありません。人間と同じように、繰り返しトレーニングをしていくことで認識の精度を高めていくというものです。

・教師なし学習

教師なし学習も、事前に学習を行うという点においては教師あり学習と一緒です。ただ、教師あり学習と大きく異なるのは、「正常・不良といったラベルを付けることなく、大量のデータを読み込んでいく」という点にあります。そして、大量のデータを読み込んでいくことによって、次第にAIが自律的に認識を行うようになるわけです。

・半教師あり学習

半教師あり学習は、その言葉通り「一部のデータにだけラベルを付ける」という作業をすることで、ラベルなしのデータを生かしていく機械学習モデルです。アルゴリズムとしては、混合ガウスモデルやブーストラップ法といったものが存在します。

基本的に、半教師あり学習のラベル付きデータだけでは疎かになってしまう部分が存在するわけですが、それをラベルなしのデータが補っていくことが可能です。

・強化学習

強化学習とは、AIが報酬の獲得を求めて能動的に学んでいく機械学習モデルです。その一例としては、試行錯誤を繰り返し、膨らんだ利益を獲得する方法などが挙げられるでしょう。そのため、株取引などの分野で活躍するケースが多い傾向にあり、異常検知ではあまり用いられることがありません。

・生成モデル

生成モデルとは、既存のデータをもとにしてオブジェクトをつくることが特徴の学習モデルです。外れ値の検出を行うことができ、データをサンプリングできるという点が大きな特徴といえます。異常検知の分野でいうと、正常なデータのみを学習する必要があるケースにおいては重要な役割を果たす学習モデルといえるでしょう。

■異常検知の活用事例

異常検知は、さまざまな場所で活用され始めています。実際にどのような場所で活用されているのか、その事例を詳しくみていきましょう。

・故障の予兆検知(予知保全)

異常検知のシステムは、工場にある機械や設備の故障を予知し、その機械や設備を最適な状態で管理するための予兆検知(予知保全)でも活用されています。たとえば、産業用液晶ディスプレイや車載用液晶ディスプレイの開発、製造、販売を行っているメルコ・ディスプレイ・テクノロジー株式会社では、ドライポンプモータの予知保全を行うために、三菱電機株式会社が提供している汎用シーケンサ「MELSEC-Qシリーズ」用電力計測ユニットを導入しています。

このユニットを導入したことによって、電流の変化からモータの故障を事前察知することができるようになりました。これまで、モータが故障した場合には修理に膨大な費用がかかってしまっていましたが、この予知保全によって故障する前にメンテナンスを行えるようになったそうです。また、コスト面だけでなく生産管理や予算管理といった部分においても効果を発揮し始めているといいます。

装置の故障予知とは?導入の流れや活用事例を紹介

・スパム検知

異常検知は、スパムの検知にも活用されています。迷惑メールやクレジットカードの不正仕様などが代表的な例として挙げられるでしょう。近年は技術が向上してきているため、スパムメールは自動的に迷惑メールボックスへと振り分けられるケースが多いです。

そのため、スパムメールの存在すら知らないという人も多いかもしれませんが、これは異常検知システムを活用しているからこそ、適切にスパムメールを自動的に迷惑メールボックスに振り分けることができているのです。

迷惑メールに多く利用されがちな単語、リンクをAIに学習させることによって、より高い精度で振り分けることが可能になっています。

・物体の欠陥検知

製造業においては、製品の外観検査が必要不可欠です。外観に欠陥のある製品をそのまま出荷してしまった場合、大きな問題へと発展してしまう可能性があります。そのようなトラブルを避けるために、多くの製造業では外観検査を行うための体制を整えています。

異常検知システムは、そんな物体の欠陥検知にも多く活用されています。正常な製品と異なるポイントをいち早く見つけ出すことによって、より正確に欠陥のある物体を取り除くことができるのです。これまでは目視によるチェックが一般的でしたが、異常検知システムの導入によって業務効率化を実現する企業も多くなってきています。

・医療診断

異常検知は、医療の分野でも役に立っています。たとえば、患者の身長・体重・血圧といったデータを読み込み、さらにセンサー等の最新機器を活用することによって、患者の健康状態にかかわるデータをリアルタイムで取得できるようになるのです。

このデータを効率的に収集すれば、医師の判断に役立つデータとして役立てていくことも可能になります。医療の質を高めるという点でも、異常検知は役に立っているのです。

■異常検知AIカオスマップでサービスを比較する

今回は、異常検知の仕組みや種類などについて詳しくご紹介しました。AIを用いて生産性向上や業務効率化を図る企業は非常に多くなっていますが、大量のデータを扱うようになるにつれて異常なデータが混ざり込む可能性も増えていくため、異常検知システムは必要不可欠なものになっていくでしょう。

また、ログやリソースデータを蓄積していくのではなく、調査や分析によって異常検知の精度を高めていくことも極めて重要になります。そのためにも、一人ひとりがAIに関する知識を養い、根本から理解していくことが重要になるのではないでしょうか。

AIsmileyでは、異常検知のAIについて比較検討できるカオスマップを無料でお配りしています。異常検知AIの導入を検討の際は、ぜひお気軽にご活用ください。

異常検知のサービス比較と企業一覧を見る

AIsmiley編集部

株式会社アイスマイリーが運営するAIポータルメディア「AIsmiley」は、AIの専門家によるコンテンツ配信とプロダクト紹介を行うWebメディアです。AI資格を保有した編集部がDX推進の事例や人工知能ソリューションの活用方法、ニュース、トレンド情報を発信しています。

・Facebookでも発信しています
@AIsmiley.inc
・Twitterもフォローください
@AIsmiley_inc

今注目のカテゴリー

チャットボット

画像認識・画像解析

需要予測

OCR・文字認識

AI活用のご相談したい企業様はこちら

03-6452-4750

AI製品・ソリューションの掲載を
希望される企業様はこちら