生成AI

AIエージェント
生成AI
ChatGPT連携サービス
AI受託開発
対話型AI -Conversational AI-
ボイスボット
バーチャルヒューマン
教師データ作成
AI研究開発
通訳・翻訳
声紋認証
機密情報共有・管理
契約書管理システム
ワークステーション
FAQシステム
AIカメラ
生体認証
インボイス制度対応システム
データセットの収集・購入
コールセンター
人事・総務向け
インバウンド対策
コンバージョンアップ
KYT・危険予知で労働災害防止
無料AI活用
顧客リスト自動生成
ロボットで自動化
LINE連携
セキュリティー強化
テレワーク導入
AI学習データ作成
配送ルート最適化
非接触AI
受付をAIで自動化、効率化
AIリテラシーの向上サービス
日本語の手書き文字対応AI-OCR
Windows作業の自動化RPAツール
リスク分析AIで与信管理
紙帳票仕分けAI-OCRサービス
サプライチェーン
AIコンサルティング
最終更新日:2024/04/11
順天堂大学とシスメックス株式会社の共同研究グループは、血液疾患鑑別が可能な「統合型AI分析システム」を構築しました。今後、骨髄増殖性腫瘍の鑑別にあたりAI自動分析技術による末梢血を用いた迅速で簡便なスクリーニング検査・診断支援への応用につながると期待されます。
このAIニュースのポイント
順天堂大学大学院医学研究科次世代血液検査医学講座の木村考伸 大学院生、田部陽子 教授らとシスメックス株式会社の共同研究グループは、人工知能(AI)における深層学習技術を用い、複数の血液検査結果を総合的に判断することで、血液疾患鑑別が可能な「統合型AI分析システム」を構築しました。
このAIシステムを用いて血液がんである骨髄増殖性腫瘍患者の病型分類に対する網羅的解析を行い、高精度な自動鑑別が可能であることを実証しました。今回の成果は今後、骨髄増殖性腫瘍の鑑別にあたりAI自動分析技術による末梢血を用いた迅速で簡便なスクリーニング検査・診断支援への応用につながると期待されます。
血液疾患の診断においては、血球数算定検査や顕微鏡による血液細胞形態検査、細胞表面抗原検査、さらに遺伝子検査など、複数の検査情報に基づいた総合的な判断が必要ですが、これらの検査に携わる熟練した検査技師や医師が不足していることから、AI深層学習技術を用いた血液疾患の診断支援のニーズが高まってきました。
特に、血液がんの骨髄増殖性腫瘍は血液細胞形態での判別が難しく病型分類が困難でした。そこで本研究では、血液細胞形態のAI自動分析と血液基本検査である血球数算定の測定結果を組合せた「統合型AI分析システム」による早期スクリーニング検査・診断支援システムの構築を目指しました。
本研究では、血液疾患、感染症や健常人を含む3,261症例の末梢血液標本から収集した計695,030個の大規模な血液細胞のデジタル画像データベースを用いて、まず、深層学習技術によるAI画像解析システムの構築を行いました。さらに基本的検査である血球数算定情報を組み込むことで「統合型AI分析システム」の構築を行いました。
次に、このシステムを用いて骨髄増殖性腫瘍の病型である真性多血症、本態性血小板血症、骨髄線維症に対する血液検査情報の網羅的な分析を行いました。
まず、AI深層学習を用いて血液細胞の形態異常などの画像特徴量を抽出しました。抽出された特徴量に血球数算定の値を統合し、統計的計算により病型鑑別に最も効果的と判定された174の特徴量を選び出しました。その後、これらの特徴量を用いてAI技術の1つである勾配ブースティング法による解析を実施しました。
そして、骨髄増殖性腫瘍の病型鑑別に対して本システムによる鑑別診断能を検証した結果、極めて高精度な診断能力を有することを実証しました。

今後、本研究成果の臨床実用化を進めると共に、さらに多種類の検査データを組み入れることによって汎用性のあるAI自動分析システムの構築を進めます。さらに、白血病などの血液疾患の確定診断に不可欠である骨髄検査の自動化を次のターゲットとして、骨髄中の細胞の自動識別に挑戦し、確定診断に踏み込んだAIシステムの構築を目指します。
出典:PR TIMES
業務の課題解決に繋がる最新DX・情報をお届けいたします。
メールマガジンの配信をご希望の方は、下記フォームよりご登録ください。登録無料です。
AI製品・ソリューションの掲載を
希望される企業様はこちら