DXを推進するAIポータルメディア「AIsmiley」| AI製品・サービスの比較・検索サイト
お急ぎの方は、まずお電話で 03-6452-4750
MAIL
お急ぎの方は、まずお電話で 03-6452-4750 10:00〜18:00 年末年始除く

需要予測AIとは?業種別の導入事例と最新製品を比較!

最終更新日:2022/03/09

近年は消費者のニーズが多様化しており、これまでのような大量生産ではなく多品種少ロットでの生産が求められるようになりました。しかし、この多品種少ロットでの生産は決して簡単なものではありません。それは需要の予測を見誤ってしまうと、在庫過剰を引き起こしてしまうからですが、実際にも需要予測のミスが原因となり、在庫の保管や廃棄ロスによって利益が圧迫する問題も少なくありません。

このような事態を避けるべく、最近ではAI(人工知能)を活用した需要予測によって適切な生産量を維持するという事例が多くなってきています。では、具体的にどのような方法で需要予測が行われているのでしょうか。また、AIを活用した需要予測は、どのような業界で活用されているのでしょうか。

今回は、需要予測の意味や活用事例について詳しくご紹介していきますので、ぜひ参考にしてみてください。

■需要予測とは?

■需要予測とは?

 

需要予測とは、ある商品の売上量を短期的もしくは長期的に予想することをいいます。製造する量や発注量は、この需要予測に従って決めていきます。ただし、モノが売れるにはさまざまな要因が絡み合うため、予想するのは簡単ではありませんでした。昨今はこうした課題を解決すべく、これまで担当者が積み重ねた経験や勘に頼りがちだった需要予測をAI・人工知能で自動化するシステムが登場し、精度を高めています。

そんな需要予測は、近年さまざまな企業で導入され始めているわけですが、なぜ需要予測は多くの業界で重要視されているのでしょうか。その理由は複数考えられますが、特に大きな理由として挙げられるのは「競合する商品・サービスに対して優位性を得る必要があるから」という点です。

昨今はさまざまな商品・サービスが溢れており、市場では類似する商品・サービスが競合しています。そのため、単純な商品力だけでなく、付加価値によって勝負するというケースも少なくありません。需要予測によって利益の最大化を図り、その利益を新たなマーケティング施策に投じていくという方法で事業規模を拡大するケースが多くなってきているのです。

需要予測を行っていれば、「どの程度売れる見込みなのか」「どのペースで生産する必要があるのか」といった点を事前に把握して、計画を立てることができます。しかし、需要予測を行わずに生産を継続すると、在庫切れが発生したり、在庫過多になってしまったりする可能性があるのです。そういった失敗を避ける上でも、需要予測は極めて重要なのです。

●需要予測には大きく分けて3つの種類が存在する

そんな需要予測には、大きく分けて「既存商品の需要予測」「新商品の需要予測」「長期的な需要予測」の3つがあります。

このうち、「既存商品の需要予測」については時系列予測モデルという手法がよく使われます。1年、3ヶ月分、半年といった過去の売上実績データから平均値をとり、現在の需要予測を行う方法です。

また、昨年同時期の売上実績と、直近の売上データを平均して分析する移動平均法という手法もあります。この手法では季節要因を加味できます。このほか、トレンド、気象データや取扱い店舗数といった売上に影響を与える要因を加味して、さらに予測の精度を高める方法もあります。

■需要予測AIのメリット

需要予測AIを導入した場合、さまざまなメリットを得ることができます。ここからは、需要予測AIによって得られるメリットについて詳しくみていきましょう。

・業務効率化を実現できる

需要予測AIを導入すれば、これまで手作業で行われていた需要予測をすべて自動化できるため、従業員は別の業務に集中することができるようになります。それにより、さらなる生産性向上が期待できるのです。
また、別の業務と需要予測作業を並行して行う必要がなくなるため、従業員の負担減少にも繋げられます。その結果、「従業員のモチベーション低下に伴う離職率増大」というリスクを防ぐことにも繋がるのです。

・在庫量を最適化できる

商品を扱う上で、在庫量を最適化することは極めて重要です。しかし、最適な在庫量を予測することは決して簡単ではありません。需要予測AIであれば、過去の売り上げや顧客属性、天候、為替といったさまざまなデータを活用して分析するため、より高精度な予測を行うことができるのです。
また、AIには「データが蓄積されるごとに予測精度が高まる」という特徴もあるため、継続的にデータを蓄積して予測精度を高めることで、さらなる売上アップも期待できるでしょう。

・データに基づいた経営を実現できる

これまでの需要予測は、担当者の経験や勘に基づいて行われるのが一般的でした。そのため、必ずしも予測通りの需要になるとは限らなかったわけです。その点、AIを活用した需要予測であれば、過去のデータに基づいた需要予測を行うため、より高い精度での予測が可能になります。
もちろん、AIを活用したからといって予測精度が100%になるわけではありませんが、データに裏付けられた行動は、さらなる成果に繋がっていく可能性も高まるでしょう。

■需要予測AIのデメリット

需要予測AIには多くのメリットがある一方で、いくつかのデメリットが存在することも事実です。たとえば、ベテラン従業員の経験や勘などを頼りに需要量の予測を行い、意思決定を下している企業の場合、属人的な作業が多くなるため、会社自体に知見が蓄積されません。

むしろ、ベテラン従業員が退職してしまった時点で、経験に頼った予測は行えなくなってしまうのです。また、新人を起用しても即戦力にはならないため、ベテランの経験や勘などを継承していくための時間が必要になります。こういった点を踏まえると、人材流動の硬直化が起きてしまう可能性もあるでしょう。

そして何より、需要予測には「想定外の事態には対応できない」という問題があります。予想外の事態に直面した場合、事前の計画とは異なる方針で生産調整を行わななければなりません。そのため、欠品などのトラブルに対して冷静に対応できず、販売機会を失ってしまう可能性があるのです。分析対象となるデータが少ないときほど、想定外の事態に直面してしまう可能性は高くなるため、しっかりとデータを蓄積することが重要といえます。

■AI需要予測モデル構築の流れ

需要予測には、いくつか注意しなければならない点があることがお分かりいただけたかと思いますが、十分な過去データがあれば高い予測精度を実現できる「AI需要予測システム」も最近では多くなってきています。そのため、十分な過去データがある場合には、より高い精度で需要予測を行うことが可能です。

ただ、販売実績や出荷実績といった過去データが十分ではない場合、AIを活用しても予測精度を高めることはできません。あくまでも「予測モデルは過去のデータに付随した算出方式」であるということを把握しておく必要があるでしょう。

また、過去データの蓄積期間が短い場合も、予測精度を高められない原因のひとつとなります。最低でも過去2年間のデータを蓄積しておいたほうが、より正確性を高められるでしょう。

では、実際にAI需要予測モデルを構築する場合、どのような流れで作業が進められるのでしょうか。ここからは、AI需要予測モデル構築の流れについて詳しくみていきましょう。

1.導入範囲決定

まずは、AI需要予測モデルの導入範囲を決定します。改善すべきポイントはどこなのかを明確にし、「改善目標の設定」「業務内容の再設計」を行いながら導入範囲を定めていきます。

2.導入費用見積り

導入範囲が決まったら、次に導入費用の見積りを行います。機材にかかる費用、データ収集にかかる費用などの見積もりを行い、本格に準備を開始していくことになります。

3.データ収集

見積もりを終えたら、次に需要予測AIに必要不可欠な「データ収集」を行っていきます。需要予測を行う上で必要となるデータの定義付けを行ったり、データ有無の確認を行ったりしていきます。

4.モデル構築

データ収集を終えたら、次にモデル構築を行っていきます。AIに収集したデータを学習した上で、モデルの精度を検証していくため、非常に重要な段階といえるでしょう。

5.PoC検証

モデル構築を終えたら、PoC検証によって需要予測AIの有効性をチェックしていきます。PoC検証によってチェックするのは、主に「実現性」「効果とコスト」「具体性」などです。

6.導入・運用

PoC検証によって再現性が確認できたら、いよいよ導入・運用へと進んでいきます。現場に需要予測AIを設置し、新しい業務工程へと浸透させていきます。必要に応じて、再学習によって改善を図る必要もあるでしょう。

■需要予測AIの導入事例

需要予測AIは、すでにさまざまな業界で導入され始めています。実際にどのような業界で需要予測AIが導入されているのか、その事例をいくつかみていきましょう。

●タクシー配車を最適化

●浜松市の遠鉄タクシーではAI需要予測システムの「AIタクシー」を導入
(参照:地域からのお知らせ(東海) :静岡県内初!遠鉄タクシーにてNTTドコモが提供するAI技術を活用した「AIタクシー」を運行開始!!お知らせ | NTTドコモ)

静岡県浜松市の遠鉄タクシーでは、NTTドコモ東海支社と共同で、AIによるタクシーの需要予測「AIタクシー」を開始しました。

需要予測AIの代表的な導入事例としては、タクシー業界が挙げられるでしょう。たとえば、静岡県浜松市の遠鉄タクシーでは、NTTドコモ東海支社と共同で、AIによるタクシーの需要予測「AIタクシー」を開始しました。

AIタクシーは、エリアや気象状況、曜日、時間帯、イベントの有無などによって、今後30分間のタクシー需要をリアルタイムで予測するという機能を持つタクシーです。同社では、運転手にタブレット端末を配布し、予測に応じたスムーズな配車を行っています。

利用者はここ数年横ばいで推移しているものの、天候条件や通院の配車予約が重なると配車待ちが発生する状況が生じていました。そこで同社では、あらかじめ需要が予測されるエリアにタクシーを手厚く配備しておくことで、サービス向上に役立つとしています。

また、AIによる需要予測は、売上増にも寄与すると期待されています。タクシーの需要予測は、天候、曜日、時間帯、時期、イベントの有無などさまざまなファクターに左右されます。ベテランドライバーであれば、長年の経験から利用者が多そうなエリアを流すことで利用者を見つけることができますが、新人ドライバーにはそういったスキルがありません。AIによる需要予測をドライバーのスキルアップにつなげることで、新人とベテランの売上差を縮める見込みがあります。

ソニー、ソニーペイメントサービスとタクシー大手5社も、AIを使った同様の取り組みを始めています。同社のシステムでは、長距離利用客が見込めそうなエリアなどの条件でも絞り込みができるとのことです。

※NTTドコモは昨今の配車アプリの急速な普及や、新型コロナウイルス感染症による外出自粛などタクシー市場全体が大きく変化していることから、経営資源を集中すべく2022年6月15日にサービスを終了することを発表しました。

●食品業界の予測精度向上

食品業界でも需要予測AIは積極的に活用されています。その一例として東京都が行っているのは、食品ロスを削減するための取り組みとして、食品メーカー、小売りなどの各業種が情報共有をし、需要の予測情報をまとめて製造過多を防ぐというものです。

具体的には小売り店や卸、食品メーカーから売り上げや在庫の情報提供を受けて、需要予測を手掛ける企業に情報を一元化。予測会社は天候やイベントといった要素も加味して、食品の需要予測を提供します。

食品メーカーは、小売店からの発注情報をもとに食品の製造量を調節します。しかし、自前のシステム化が遅れている中小企業などは自社製品の売れ行きを地域、期間ごとに細かく把握していない場合が多く、廃棄が生まれやすい環境にあります。

そのため、こういった取り組みを積極的に行うことで、さらなる食品ロス削減が期待できるでしょう。

●需要予測で発注量を調節

商品の製造から販売に至るまでの一連の流れを最適化させる経営管理手法の「SCM(サプライチェーンマネジメント)」においても需要予測は重要視されています。このサプライチェーンとは、原材料の調達から商品が消費者に渡るまでの生産・流通プロセスを表わします。

イメージとしては、プロセスと「情報の流れ」を結びつけ、サプライチェーン全体で情報を共有することで全体最適化を図っていきます。そのようなSCMにおいても、需要予測は非常に重要とされています。需要予測が適切に行われていなければ、在庫管理が適正化されずに経営を圧迫してしまうからです。しかし、需要予測を適切な方法で行っていれば、過剰在庫を防ぐことができます。

これは、必要なものを必要なときに必要なだけ供給する「ジャスト・イン・タイム」と呼ばれるもので、SCMにおける基本といっても過言ではないほど重要視されているものなのです。

●工場内の省エネルギー化を実現

三井化学株式会社では、バッチプラントにおける蒸気量の需要予測によって、工場の省エネルギー化や燃料・電力削減を目指していました。これまではプラント内の必要蒸気量や電力の自家発電量、そして燃料コストなどをリアルタイムで監視するシステムを運用していましたが、新たに「近未来に起こる蒸気・電力量の変動予測」をベースとした工場内のさらなる省エネルギー化に着手し始めたそうです。そして、その際に導入したのが「AI需要予測」でした。

AIを導入し、蒸気の需要量を予測するモデルを構築することによって、工場内で発生する蒸気ロスを削減したり、過剰な電力消費を抑制したりといった省エネルギーを狙っています。

●電力需要予測システムで高い予測精度を実現

需要予測AIは、電力の需要予測にも活用されています。このシステムを活用しているのは、世界最大の民間気象情報会社の株式会社ウェザーニューズです。

同社では、独自のAIを用いた電力需要予測システムを開発し、そのシステムを活用した「電力需要予測サービス」を提供しています。このシステムは、電力会社が保有している消費電力などの最新のデータと、ウェザーニューズの気象データを活用し、AIが30分ごとに学習を繰り返して電力需要を予測していくというものです。

2020年4月1日から、サミットエナジー株式会社で同サービスの運用を開始したところ、導入からわずか1週間で、電力需要予測計画の効率化によるコスト削減効果、需要予測の精度向上が実現されたといいます。そして、精度検証によって同システムの有効性を確認できたことから、サミットエナジーでの採用が正式に決定したのです。今後こういったサービスの活用はさらに広がっていくかもしれません。

●Jリーグのダイナミックプライシングに活用

また、Jリーグなどプロスポーツの世界でも、AIを用いた需要予測システムに基づき、ダイナミックプライシングを取り入れる動きが出ています。
席にこだわりがある観客は早々にお気に入りのポジションを購入する、そうでない場合は価格が下がるぎりぎりまで待つ、というように、観客は席種を優先するか価格を優先するかを選ぶことができます。一方、興行側は座席価格が下がっても販売数量を拡大することで、損失をカバーすることができるわけです。また、「適正価格」を主催者側が決定することで、人気のチケットを大量に買い占める転売サイト対策につながるというメリットもあります。

実際にJリーグの横浜F・マリノスでは、このダイナミックプライシングを導入したことで、チケットの売上が1割増となったといいます。横浜F・マリノスでは、2018年7月28日に行われたホームゲームの清水エスパルス戦から、需要予測システムに基づいたダイナミックプライシングを導入し始めました。
このシステム導入により、2018年8月1日にニッパツ三ツ沢球技場で行われたサンフレッチェ広島戦では、メインスタンド中央の座席である「メインSSS席(定価5,900円)」が前日までに約17%、試合当日には約29%値上がりしたそうです。その一方で、バックスタンド中央の座席である「バックSBホーム(定価4,600円)」に関しては、前日までに約4%、当日までに約11%値下がりしました。

これまで、すべての試合のチケット料金はシーズン開幕前に決定されていましたが、スポーツのチケット需要はさまざまな要因によって変化するのが実情です。「人気選手が出場するかどうか」「チームの順位はどれくらいか」「対戦相手の順位はどれくらいか」「試合当日の天気はどうか」といった点などは、まさに需要が変化する要因といえるでしょう。しかし、こういった点はシーズン開幕前の時点で予測することはできません。

その点、ダイナミックプライシングであれば、日々の販売実績などを踏まえた上で、試合当日まで需要予測を行いながらチケット価格を変動させていくことができるのです。
ただ、このダイナミックプライシングに関しては、誤った捉え方をしている人も少なくありません。その代表的な誤解のひとつに「チケット価格の吊り上げ」が目的だと捉えてしまっていることが挙げられるでしょう。しかし、ダイナミックプライシングの目的はあくまでも「興行主の収益を最大化させること」に他なりません。

需要が少ない座席に関しては価格を下げることで集客力を高め、需要が高い座席は価格を引き上げることで、需要のバランスを保ちやすくなるということです。一般的なチケット販売方法の場合、需要が多い座席のチケットは発売直後に売り切れてしまい、転売サイトなどに高額で流通してしまうケースが多々あります。これは、興行主にとって機会損失に他なりません。その点、ダイナミックプライシングであれば人気のある座席の価格を上げることで転売サイトへの高額転売も防ぎやすくなるのです。

また、横浜F・マリノスに関しては、上限の価格を1万円に設定していたため、特に多くの入場者が見込める試合においても、価格が異常な高騰を見せることはありませんでした。

■需要予測AIの最新製品を比較

AIsmileyでは、予測AIカオスマップを公開しています。現在はさまざまな種類の予測AIが存在し、そのツールごとに機能や実現できる内容に違いがあるため、目的に合う最適なAIを導入することが大切です。

自社の課題は何か、どんな結果を実現したいのかという観点から、それぞれのツールの違いを充分に比較検討することが重要になるため、ぜひ活用してみてはいかがでしょうか。

予測AIカオスマップを無料ダウンロード

AIsmiley編集部

株式会社アイスマイリーが運営するAIポータルメディア「AIsmiley」は、AIの専門家によるコンテンツ配信とプロダクト紹介を行うWebメディアです。AI資格を保有した編集部がDX推進の事例や人工知能ソリューションの活用方法、ニュース、トレンド情報を発信しています。

・Facebookでも発信しています
@AIsmiley.inc
・Twitterもフォローください
@AIsmiley_inc

今注目のカテゴリー

チャットボット

画像認識・画像解析

需要予測

OCR・文字認識

AI活用のご相談したい企業様はこちら

03-6452-4750

AI製品・ソリューションの掲載を
希望される企業様はこちら