生成AI

AIエージェント
生成AI
ChatGPT連携サービス
AI受託開発
対話型AI -Conversational AI-
ボイスボット
バーチャルヒューマン
教師データ作成
AI研究開発
通訳・翻訳
声紋認証
機密情報共有・管理
契約書管理システム
ワークステーション
FAQシステム
AIカメラ
生体認証
インボイス制度対応システム
データセットの収集・購入
コールセンター
人事・総務向け
インバウンド対策
コンバージョンアップ
KYT・危険予知で労働災害防止
無料AI活用
顧客リスト自動生成
ロボットで自動化
LINE連携
セキュリティー強化
テレワーク導入
AI学習データ作成
配送ルート最適化
非接触AI
受付をAIで自動化、効率化
AIリテラシーの向上サービス
日本語の手書き文字対応AI-OCR
Windows作業の自動化RPAツール
リスク分析AIで与信管理
紙帳票仕分けAI-OCRサービス
サプライチェーン
AIコンサルティング
最終更新日:2024/01/24
AIがEVバッテリーの劣化を予測
研究者は、AIを学習させることによってEVバッテリーの劣化を予測しました。また経年劣化を予測することによって、電池の耐久性が向上することが可能になります。
このAIニュースのポイント
研究者は、AIを学習させることによってEVバッテリーの劣化を予測しました。またリチウムイオン電池の経年劣化を予測することによって、電池の耐久性が向上することが可能になります。
リチウムイオン電池は、電動モビリティ台頭において重要な要素です。しかし、現時点で電池の状態、寿命を予測することまでが技術的限界です。
リチウムイオン電池は、充電や放電の際に起こる「サイクルエージング」と呼ばれる経年劣化によって、時間とともに容量が低下してしまいます。また電池の保管時や使用しない時に起こる「カレンダーエージング」と呼ばれる劣化もあります。
電気自動車は、その大半を駐車場で過ごすことになるため、カレンダーエージングによるセルの容量劣化を予測することは非常に重要です。
以上の背景から、研究者は機械学習アルゴリズムを用い、バッテリーの劣化を正確に予測することに取り組んでいます。
EUの助成を受けた最近の研究では、市販のリチウムイオン電池の幅広い化学組成を対象に、アルゴリズムの精度を調査を行いました。
研究に以下の2つのアルゴリズムを使用しました。Extreme Gradient Boosting(XGBoost)、Artificial Neural Network(ANN)。
XGBoostは決定木ベースの機械学習アルゴリズムで、回帰や分類の問題で広く採用されています。また、ANNは人工適応システムで、グローバルな入力を予測される出力に変換します。


性能を評価するために、予測値と測定値の間の誤差の平均的な大きさを測定するMAPE指標を使用しました。MAPE値が小さいほど予測精度が高まります。
アルゴリズムのテストでは、XGBoostを使用することで、ほとんどの化学物質の暦年変化を、平均絶対誤差を大幅に縮小し、効果的に予測できることが示されました。一方、ANNは、セル化学物質にのみ効果的結果をもたらしました。
今後、研究成果を実用化するため、どのようなステップを踏む必要があるかが注目されます。
出典:TNW
業務の課題解決に繋がる最新DX・情報をお届けいたします。
メールマガジンの配信をご希望の方は、下記フォームよりご登録ください。登録無料です。
AI製品・ソリューションの掲載を
希望される企業様はこちら